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Abstract
CXL.mem and the resulting memory pool are promising and gain-

ing great attention. Unlike local memory, CXL DIMMs stay at the

I/O subsystem, whose inferior performance can easily impact the

processor pipeline and memory subsystem, yielding performance

interference, hardware contention, obscure behaviors, and under-

utilized communication and computing resources. However, our

community lacks a tool to understand and profile the CXL.mem
protocol execution end-to-end between CPU and remote DIMM.

This paper fills the gap by designing and implementingPathFinder1,
a systematic, informative, and lightweight CXL.mem profiler. PathFinder
leverages the capabilities of existing hardware performance moni-

tors (PMUs) and dissects the CXL.mem protocol at adequate granular-
ities. Our key idea is to view the server processor and its chipset as

a multi-stage Clos network, equip each architectural module with

a PMU-based telemetry engine, track different CXL.mem paths,

and apply conventional traffic analysis techniques. PathFinder per-

forms snapshot-based path-driven profiling and introduces four

techniques, i.e., path construction, stall cycle breakdown, interfer-

ence analyzer, and cross-snapshot analysis. We build PathFinder

atop Linux Perf and apply it to seven case studies.

CCS Concepts
• Networks → Network performance analysis; •Hardware →
Buses and high-speed links; • Software and its engineering
→ Abstraction, modeling and modularity;
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1 Introduction
CXL-based memory disaggregation [6, 10, 15, 16, 19–21, 24, 25] has

gained significant traction recently due to independent resource

1
PathFinder is available at https://github.com/netlab-wisconsin/PathFinder.
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scaling, high utilization, and cost efficiency. We have seen a grow-

ing interest in deploying CXL memory pooling in data centers,

enterprise clusters, and edge clouds. With the next-generation CXL

fabric and the capability to build multi-tiering fabric switching [18],

a disaggregated memory pool can provide tens to hundreds of

terabytes of capacity at the bandwidth close to local DIMMs.

The key technology enabler is the CXL.mem protocol [18] that

allows host processors to issue load/store instructions directly to

remote DIMMs. A memory request traverses the processor pipeline,

served by its local memory hierarchy first (L1D, L2, and LLC) and

then forwarded to the CXL DIMM via the FlexBus. The data re-

sponse is then delivered to the memory subsystem and resumes

the stalled pipeline execution. Load/store commands traverse over

the underlying fabric as flits, completely transported to the host.

The remote memory usually exposes itself as a CPUless NUMA

node, facilitating building memory tiering and object-based remote

memory solutions [46, 66, 79, 100, 108]. This significantly simplifies

porting existing applications and developing new ones.

However, unlike local memory, accessing CXL memory is inher-

ently slow because requests must traverse the system bus or even

cluster interconnect in a switched pooling case. This not only slows

down the application execution, but more importantly, stalls the

processor pipeline and changes the memory subsystem’s access

characteristics. For example, some micro-architecture components

(like line fill buffer) would be congested, blocking local memory

requests. The data locality and application working set become

unpredictable when switching from local to CXL memory because

read/prefetch-induced CXL loads take longer to fetch data, whereas

more local requests are issued, competing for the available slots in

different caching layers. Besides, one would experience underuti-

lized communication and computing resources because there might

exist some contention along the CPU pipeline, stymying from sub-

mission of more memory commands. Until now, our community
lacks a systemic profiling tool to understand and analyze the CXL.mem
protocol execution and unearth the root causes of the above scenarios.

Building such a utility is non-trivial and entails three challenges.

First, CXL.mem has multiple non-transparent data paths (§2.2) be-
tween cores and off-chip memory, whose execution characteristics

hinge on compute, memory, and I/O substrate. Second, CXL.mem
load/store instructions are tightly coupled with the deep and out-

of-order processor pipeline, which runs at the nanosecond-scale

granularity and exposes fewer interfaces to query its execution sta-

tus. Third, the overlapping and intertwining nature between local

and CXL memory streams makes it hard to isolate individual behav-

iors. Today, people mostly tackle this issue in an ad-hoc manner, i.e.,

combining a list of profiling tools from micro-architecture [1, 3],

memory subsystem [13, 43, 80], and PCIe levels [55, 69, 86], with

no end-to-end diagnostic capability.

We find that the performance monitor unit (PMU) on commodity

servers is powerful and provides a variety of counters to track
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different CXL.mem data paths. We explore a slew of PMUs across the

core, uncore, interconnect, system bus, and CXL DIMM modules,

empirically explore their capabilities and limitations, and identify

232 counters to dissect the CXL.mem protocol execution (§3).
We then design and implement the PathFinder utility to system-

atically characterize and analyze CXL.mem. Our key idea is to view

the server processor and its chipset as a multi-stage Clos network,

equip each architectural module with a PMU-based telemetry en-

gine, track different CXL.mem paths, and apply conventional traffic

analysis techniques [23, 32, 36, 44, 60, 103]. PathFinder performs

snapshot-based path-driven profiling–it takes time series snapshots,

classifies CXL.mem transactions based on paths, and examines how

concurrent paths interleave over each on-path hardware module.

PathFinder comprises four techniques: (a) PFBuilder, constructing
the CXL data path map via synthesizing different PMU counters

(§4.3); (b) PFEstimator, which employs a back-propagation algo-

rithm that gradually attributes the CXL-induced stall cycles in

a bottom-up fashion to the CPU pipeline (§4.4); (c) PFAnalyzer,
zooming each architectural component via white-box modeling

and exploring how concurrent CXL and non-CXL streams inter-

fere with each other (§4.5); (d) PFMaterializer, which introduces

an internal time-series database, takes a per-snapshot digest as

inputs, and identifies consistent execution characteristics, such as

data locality, contention, and resource under-utilization (§4.6). In
sum, PathFinder dissects CXL.mem accesses and associated applica-

tions across the entire server system from the temporal and spatial

dimensions at the required granularity.

We build PathFinder atop the Linux Perf and evaluate it on two

types of machines: (1) an Intel Sapphire Rapids (SPR) server with an

Intel Agilex-based CXL DIMM; (b) an Intel Emerald Rapids (EMR)

server with Micron CZ120 CXL DIMMs. Using 77 applications (i.e.,

SPEC CPU 2017 [17], PARSEC [35], SPLASH-2x [105], GAP [33],

and Redis [14]), we demonstrate the effectiveness of PathFinder

via seven cases: classifying different CXL.mem-induced paths, break-
ing down the CPU stall cycles, analyzing the interference between

local and CXL memory streams, locating elephant CXL flows, un-

derstanding bandwidth allocation among current CXL memory

streams, analyzing the data locality, and applying PathFinder for

performance optimization. PathFinder is open-source, and we will

keep working with the community to improve it.

2 Background and Motivation

2.1 CXL.mem Protocol

CXL [18] is a high-speed interconnect technology based on mem-

ory semantics. It is built atop the physical layer of PCI Express

(PCIe) [22] and provides the load/store interface for remote memory

and accelerator communications. CXL exposes root access points to

the host processor via the Flex Bus I/O architecture [18]. It encloses

three types of protocols: (a) CXL.cache that enables device data

coherence via a processor snoop filter mechanism; (b) CXL.mem that
allows direct device memory access from host CPUs via load/store

instructions; (c) CXL.io, similar to PCIe with some enhancements,

like up to 32 lanes and non-coherent data read/write.

This work focuses on CXL.mem and Type-3 host managed device

memory, the basis for memory pooling [34, 45, 46, 65, 66, 72]. In
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Figure 1: Four CXL.mem data paths on an Intel SPR/EMR processor.
SB=Store Buffer. LFB=Line Fill Buffer. CCD=Cache-Coherent Direc-
tory. CHA=Caching and Home Agent.

this mode, the coherence engine runs in the host processor, oper-

ating as a master, whereas the remote memory device works as a

subordinate. There are (a) two CXL.mem request transactions from
a master to a subordinate (M2S): Request without data (Req) for

read and Request with Data (RwD) for write; (b) two response ones

in the reverse direction (S2M): Data Response (DRS) and No Data

Response (NDR) for the corresponding read and write return. Upon

receiving an M2S request, the device memory controller parses the

command, reads/writes to the memory media, and returns an S2M

data or completion. Note that CXL.mem (1) supports the 68B, 268B,
and PBR (Port-Based Routing) flit modes; (2) allows other coherent

models (like device-managed coherence via back-invalidation).

2.2 CXL.mem Data Path

A CXL memory behaves similarly to the local memory and is ac-

cessed via load/store instructions from the host processor. In a

typical memory subsystem, a memory request is first served from

L1, L2, and L3/LLC caches, and then queries the DIMMwhenmissed

from the cache hierarchy. Generally, there are four types of architec-

tural requests yielding 𝐶𝑋𝐿.𝑚𝑒𝑚 transactions (Figure 1): demand

data read (DRd), demand data write (DWr), read for ownership

(RFO), and hardware/software prefetching (HW/SW PF). Below, we

take the Intel scalable processor as an example for description.

• #1: DRd→ CXL.mem load. A demand read request first looks

up the L1D cache, then submits to the line fill buffer (LFB) when

there is a miss. LFB is a per-core hardware FIFO queue with

tens of cacheline-sized entries, buffering read responses from its

home core. It can serve a DRd when there is a hit and is sent

to L2 when missed. The per-core L2 cache works similarly to

an L1D and forwards missing DRds to a shared exclusive LLC.

An LLC usually comprises a series of equal-sized slices. Each

slice is coupled with a cache coherence directory–called Snoop

Filter (SF) [9], where both co-locate in a designated Caching and

Home Agent (CHA) hardware module. Intel processors run a

MESIF-like cache coherent protocol [51]. An LLC hit returns

data directly, whereas a miss might trigger either (1) a local

snoop to other CHAs within the processor or (2) a cross-socket

remote snoop depending on the coherent directory information

maintained [12] in the SF. When the DRd cannot be served from

caches, it is routed to a local or remote memory controller (MC)



via a mesh interconnect [84, 85]. AnMC comprises one or several

channels that map to an individual DIMM. The CXL memory

device connects to the host through the FlexBus I/O subsystem.

• #2: DWr→ RFO→ CXL.mem load/store. A demand write hits

the store buffer (SB) first, a specialized FIFO queue with dozens of

entries to decouple instruction execution from retirement. Next,

it is sent to the L1D cache. Depending on the coherent state, if

the data entry is the shared (S), invalid (I), or forward (F) state,

a read for ownership (RFO) coherent message is triggered to

gain exclusive access (discussed next). The actual CXL.mem store

happens when a writeback is issued from L1D, L2, or LLC.

• #3: RFO → CXL.mem load. An RFO request follows the same

path as a DRd, except originating from the L1D, L2, or LLC. The

requesting core would load a data copy with an exclusive (E)

state from the other core’s caches or main memory.

• #4: HW/SW PF→ DRd/RFO→ CXL.mem load. Data prefetch-
ing is a widely used latency-hiding technique. Explicit software

prefetching, guided by programs, preloads data from memory,

benefiting irregular data structure traversal. Hardware prefetch-

ing instead fetches future data implicitly by analyzing and pre-

dicting the memory access pattern, performed on a dedicated

hardware engine. As shown in Figure 1, Intel processors support

L1, L2, and even L3 HW prefetcher (since Sapphire Rapids [4]).

Both HW/SW prefetching happens asynchronously and would

trigger DRd and RFOs depending on the cache coherence state,

causing CXL.mem load transactions for later execution.

2.3 Problem, Challenges, and Prior Solutions

Problem. Unsurprising, the CXL Type-3 memory underperforms

local ones. For example, on our SPR server (§5.1), when running

the Intel MLC utility [7], the local memory’s random access latency

and bandwidth are 103.2ns and 131.1GB/s, whereas a NUMA node

sustains at 163.6ns and 94.4GB/s. However, a remote CXL DIMM

only achieves 355.3ns access latency and 17.6GB/s bandwidth. Such

a performance discrepancy not only slows down application execu-

tion but, more importantly, stalls the processor pipeline frequently

and alters the memory subsystem access characteristics. Specifi-

cally, several issues arise (§5). First, it would congest several queue-

based architectural components (like SB, LFB, and CHA), where the

contention is back-propagated along the CXL.mem data path (§2.2),
further affecting other applications accessing local memory. Second,

it implicitly changes the application’s data locality and working set,

especially whenmultiple CXL and local memory flows co-exist. This

is because read/prefetch-induced CXL loads take longer to fetch

data into the caching hierarchy. In contrast, more local memory

requests are issued concomitantly, competing for available slots at

different caching layers. Third, fewer data movements are scheduled

due to CPU backpressure and limited memory-level parallelism,

even though ample bandwidth is available at the interconnect and

system bus, entailing resource underutilization and reduced com-

puting throughput. Therefore, it is pivotal to characterize how CXL

memory flows traverse different architectural components end-to-

end, localize the system bottlenecks, and generate optimization

insights for operators and developers.

Challenges.However, achieving this entails three challenges. First,
CXL.mem has several non-transparent data paths (§2.2), originating

from core or caches, traversing a chain of on-chip hardware mod-

ules non-deterministically (depending on data locality), and finally

hitting an off-chip memory device, whose execution characteristics

hinge on compute, memory, and I/O substrates. Second, CXL.mem
load/store instructions are tightly coupled with the processor exe-

cution, which has multiple deep and out-of-order pipelines, runs

at the nanosecond-scale granularity, and only exposes a few pro-

grammable interfaces to query the execution telemetry information

online. Any proactive tracing and instrumental mechanisms are

infeasible and prohibitively expensive. Third, the local and CXL

memory flows share the underlying hardware, whose data paths

are overlapped and intertwined. It is hard to isolate their executions,

separate their architectural behaviors and performance impacts,

and determine whether CXL memory access is the culprit.

Inadequacies of Prior Solutions. People have tackled this issue

by collaboratively applying profiling utilities from different hard-

ware components, carefully synthesizing empirical observations,

and approximately inferring the root causes. For example, at the pro-

cessor level, one would employ micro-architectural profilers (like

Intel VTune [1] andAMDuProf [3]) based on awell-established Top-

Down Analysis (TMA) technique [104]. It divides the CPU pipeline

into the frontend and backend, constructs the instruction execution

graph, and uses performance counters to locate the pipeline bottle-

neck hierarchically. Though effective, these tools focus on on-chip

profiling and cannot associate core-level inefficiencies with off-

chip CXL memory access. Regarding memory subsystems, existing

tools [13, 43, 80] examine the latency-bandwidth curve under differ-

ent memory loads and access patterns. They report how workloads

use CXL DIMMs from the performance aspect, but fail to diagnose

the pathological scenarios caused by a CXL flow, such as stalling the

processor, causing head-of-line blocking to local memory requests,

or squandering the CXL link bandwidth. In terms of interconnect

or system bus, there are benchmarking frameworks [55, 69, 86]

to characterize intra-host ongoing NoC events and PCIe transac-

tions, but they barely capture how these data movements affect the

source (core) and destination (memory). Thus, we lack a system-
atic and end-to-end profiling tool to understand and analyze
CXL.mem-based systems and applications.

3 Dissecting CXL.mem Execution
We delve into the processor performance monitor unit (PMU), ex-

plore a variety of counters, and use them to characterize the execu-

tion of different CXL.mem paths (§2.2).

3.1 PMU Overview

A PMU is a specialized hardware module that monitors the proces-

sor execution characteristics. It exposes a programmable interface

for developers to select and configure monitored event registers,

and generates running statistics for people to tune and optimize

system software, compiler, and application performance. Generally,

there are three categories of performance counters. The first one

captures processor events, counting the frequency that a prescribed

event has occurred at which micro-architecture components during

the profiling period, such as issued/retired instructions, cache/buffer

hit/miss, coherent messages, etc. The second one focuses on core

execution and measures the pipeline stall cycles under what condi-

tions, for example, the buffer full, credit starvation, or incomplete
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Figure 2: We compare core performance counters when running in
the local and CXL memory cases. §5.1 describes our experimental
setup. (a) reports the core stall cycles of six applications when the
store buffer becomes full under the read/write mixed and write-only
cases. (b) and (c) present the L1D characteristics from the execution
and operation perspectives. (d) shows the LFB counter statistics. (e)
present the core stall cycles and data responses under L2 misses,
while (f) depicts the L2 operation breakdown.

read. The third one centers around the data feeding pipeline, count-

ing the time it takes to fetch a data response from the destination

to the current position, e.g., demand read response waiting cycles

at L1D. A PMU counter usually operates in two modes: (a) con-

tinuously profiling, reporting the total amount until receiving the

stop/reset signal; (b) sampling, firing an overflow interrupt when

the counter reaches a predefined threshold.

Based on our CXL.mem data path analysis, we divide PMUs into

four parts, i.e., core, CHA/LLC, Uncore, and CXL device. We com-

pare applications running atop local versus CXL memory and see

how the performance counters are affected. When drilling down

the results, our goals are (a) examining microarchitectural pipeline

behaviors in the case of slow CXL memory accesses; (b) identifying

and mapping performance counters to different data paths; and (c)

understanding the counter capabilities and limitations.

3.2 Core PMU

The core PMU can capture the origins of four CXL.mem data paths
and indicate how load/store instructions are issued. We further

break it down into SB, LFB, L1D, and L2.

Stall Buffer. It has two counters (Table 1 in Appendix), measuring

stalled cycles due to SB full under read/write mixed and write-

only (no ongoing loads) scenarios. Using these two, one could

quantify the impact of write intensity at the individual core, i.e.,

how exorbitant writes block the pipeline. As shown in Figure 2,

compared with local memory, accessing the slow CXLDIMM causes

stalled cycles to increase by 1.9× and 2.0× on average across six
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Figure 3: We compare CHA PMU when running in the local and CXL
memory. (a) reports the core LLC stall cycles. (b) presents the LLC
hit/miss breakdown. (c) shows where the missed LLC requests are
served. (d)/(e) report the occupancy of LLC hits andmisses. (f) depicts
the LLC operation breakdown. The y-axis of (d)/(e) is log-scale.

applications in the RD+WR and WR-only cases, respectively. This

is because store-induced cache writebacks take longer to commit.

L1D Cache. The core PMU introduces 12 performance counters for

L1D. We chose five representative ones (Table 1): three counting

L1D hits, misses, and evictions, and the rest measuring execution

stall cycles and data response time under L1D miss. This allows us

to analyze execution statistics, understand the L1D locality, and

track DRd, RFO, and SW PF paths. As depicted in Figure 2-b, when

running applications over CXL memory, we observe 2.1× higher

pipeline stall cycles on average than the local one, along with 1.4×
longer response wait time. Even though workloads in both local or

CXL memory scenarios issue the same amount of loads and stores,

as CXL slows down the pipeline, data locality is inherently affected.

As shown in Figure 2-c, on average across three workloads, 22.8%

fewer DRd and RFO hits happen under CXL, indicating that cached

entries benefit little for future requests, and the L1D efficiency

is reduced. Note that under an L1D miss, a cache entry is filled

or replaced depending on the cache replacement policy and how

multi-level caches are structured (i.e., inclusive or exclusive).

Line Fill Buffer. There are two LFB-related counters (Table 1) that
report the number of demand load hits and the number of stall

cycles when LFB is full (unavailable). Akin to SB, they characterize

the load intensity of DRd and RFO paths after missing from L1D. As

shown in Figure 2-d, CXLmemory changes the data locality. Among

7 applications, 519.lbm_r and 541.leela_r see an 88.5% and 12.0%

hit increase, yielding 15.4% and 54.6% stall reduced, respectively.

However, the rest experience a 14.2% hit decrease and a 59.2% more

stall cycles. The longer data response under CXL would benefit

applications whose temporal access locality is a little farther apart,

i.e., long data reused distance [41].



L2 Cache. The core PMU provides 44 performance counters, and

we select 25 for analysis (Table 1). Among them, there are (1) 18

event counters to track the hit and miss information of retired and

speculative instructions for DRd, RFO, DWr, and HW PF paths; (2)

7 cycle counters measuring the pipeline stall and data response

time of each path. Software prefetching (SW PF) is merged into

the DRd path after missing from L1D. As shown in Figures 2-e/f,

using these counters, we can learn L2-induced pipeline stalls due to

memory loads/stores, their data response time, and the frequency

of different L2 events. For example, compared with local memory,

we observe the core stall cycles are increased by 2.7× on average

when running over CXLmemory, along with 1.2×, 1.7×, 1.1× longer
data response for HW PF, DRd, and RFO requests. However, similar

to what we discussed before, the data locality is changed in the

CXL case, indicating that some data paths might become faster, e.g.,

554.roms_r and 507.cactuBSSN_r achieving 9.4% and 20.5% lower

data feed waiting cycles on the HW PF and RFO paths, respectively.

Further, comparing CXL and local memory, we find that the number

of HW PF hits, HW PF misses, DRd hits, DRd misses, RFO hits,

RFO misses, and DWr hits is reduced by 0.7%, 27.5%, 33.3%, 11.5%,

18.4%, 0.6%, and 25.8% on average, respectively. Such a trend is not

consistent across all applications. For example, 507.cactuBSSN_r

sees a 2.0× and 1.5× increase in HW PF hit and RFO miss. More

speculative load/store-related instructions (i.e., 46.3% on average)

are issued in the CXL case due to longer execution. Thus, with these

counters, one can monitor the per-core L2 data locality and zoom

in on the DRd, RFO, and HW PF request execution.

3.3 CHA PMU

The CHA maintains cache coherence and provides LLC monitoring

counters at the core/socket level (Table 2 in Appendix).

Core LLC. The core-level CHA provides 81 counters and we choose

60. Specifically, there are (a) 2 cycle counters measuring the DRd-

induced core stall and data response; (b) 10 event counters mon-

itoring cache coherence; (c) 48 counters reporting the access hit

and miss for DRd, RFO, and L1D/L2 HW PF paths. CHA offers

adequate counters to demystify the traffic load of different paths.

For example, under an LLC hit, based on the HitM bitmap, it can

show if the data is served from the local-core LLC slice, cross-core

local-chiplet LLCs, cross-chiplet LLCs, or a snoop response. For

an LLC miss, it tracks where the data is served, e.g,. local DRAM,

cross-chiplet DRAM, remote (cross-socket) cache, and remote/CXL

DRAM. The CHA further introduces an occupancy counter for a

request type, measuring how many such requests are missed per

CPU cycle, indicating the missing degree.

We observe that accessing CXL memory causes 2.1× more stall

cycles and 1.8× higher DRd response time on average across six ap-

plications when compared with the local case (Figure 3-a). Memory

access pattern also changes in the CXL case. As shown in Figure 3-b,

the number of LLC hits is reduced by 46.5%, 41.3%, and 62.2% across

the DRd, RFO, and HW PF paths on average, while the total LLC

misses is raised by 4.2×, 4.0×, and 5.3×, respectively. The missed

LLC requests are served from six locations (as discussed above).

In the non-CXL case, most DRds, RFOs, and HW PFs (more than

99.0%) are served from the local DIMM. However, when running

under CXL, we find that 38.4%, 4.1%, and 49.2% of the misses can be
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Figure 4: We compare Uncore PMU of applications running in the
local and CXL cases. (a) reports the channel occupancy of RPQ and
WPQ. (b) breaks down the load and store commands.

directly served by the cross-chiplet/socket remote cache via snoop-

ing, then followed by the CXL DIMM. This indicates that longer

memory access latency increases the core LLC cache locality.

Socket LLC and CCD Counters. The CHA PMU provides 686

counters at the socket/CCD level to monitor how LLC slices serve

requests from all cores. We choose 108 counters, including 39 event

and 69 cycle counters to track (a) LLC cache coherence state ma-

chines (like E�F/I, M�E/I, and S�I); (b) cross-core snoop filters;

(c) hit, miss, and occupancies across DRd, RFO, and HW PF paths;

and (d) the destination distribution of socket-level LLC misses. As

shown in Figures 3-d/e, compared to the local memory case, access-

ing CXL memory reduces the hit occupancy of DRd, RFO, HW PF,

and DWr on average by 86.3%, 50.0%, 84.6%, and 29.5%. Concomi-

tantly, the miss occupancy is increased by 4.8×, 1.3×, 1.1×, and 3.0×.
This is due to the longer uncore data path. We further break down

the traffic load of DRd, RFO, HW PF, and DWr paths (Figure 3-f)

and find that their hits under CXL memory are reduced by 55.4%,

48.0%, 59.4%, and 44.2% compared to accessing local memory.

3.4 Uncore PMU

The Uncore PMU captures the mesh interconnect and FlexBus I/O

behaviors (Table 3 in Appendix). We divide it into two parts: IMC

(integrated memory controller) and M2PCIe. The IMC also partici-

pates in the CXL context, serving as a host-side agent to streamline

CXL memory transactions [84, 85].

IMC. It provides 54 performance counters, among which we select

18 for data and write paths analysis. An IMC monitors the memory

module and exposes two virtual channels, where each features 9

counters. Specifically, there are (a) 4 cycle counters tracking the

number of cycles and occupancy when the Read Pending Queue

(RPQ) and Write Pending Queue (WPQ) are not empty; (b) 3 event

counters to capture CAS (column address strobe) commands; and

(c) 2 counters tracking the queue slot allocation in RPQ and WPQ.

We notice that in the case of CXL, because the CXL DIMM also

encloses device-side command queues, unlike the local memory,

little queueing happens inside the IMC (Figure 4-a). Thus, one can

ignore the IMC impact when analyzing CXL-only memory streams.

This also indicates that under mixed memory streams, the local

DIMM-induced queue at IMC could potentially block CXL accesses.

M2PCIe. It provides 34 performance counters to track FlexBus I/O,

from which we select 4 counters to monitor the CXL load/store

transactions. Among them, two report the number of entries in-

serted into theM2PCIe ingress queue from themesh and the number

of cycles during which the ingress queue is non-empty. The rest two

counters track the number of CXL memory acknowledgments sent

from the M2PCIe egress queue to the mesh and the number of cache

line data transferred. These counters are per endpoint (per DIMM),



showing the actual CXL traffic. Figure 4-b compares the load/store

in the local DIMM (using IMC) and CXL DIMM (using M2PCIe).

The total memory accesses are roughly the same. However, since

CXL accesses are slow, the average load/store amount in the same

profiling cycle is 36.7% lower compared with the local scenario.

3.5 CXL PMU

The CXL Type-3 device defines 56 counters (Table 4 in Appendix),

where 8 are used for performance diagnostics of M2S Red/RwD

and S2M DRs/NDR (§2.1). These include (a) 6 counters to monitor

the ingress packing buffers, i.e., tracking the number of inserts, the

number of cycles during which the buffers are non-empty, and the

number of cycles when the buffers are full for both the Mem Data

packing buffer and the Mem Request packing buffer; (b) 2 counters

track the number of inserts in the Mem Data egress packing buffer

and the Mem Request egress packing buffer. These are used to

derive the QoS telemetry for memory (i.e., light load, optical load,

moderate overload, and severe overload), officially introduced in

the CXL specification 3.0/3.1 [18]. However, existing CXL DIMMs

(like AMD CZ120/CZ122, Smart Modular CMM-E3S, and Samsung

CMM-B/CMM-H) are not supported. We’ll explore it in the future.

3.6 PMU Generality

The above characterizations (§3.2–§3.4) are performed on an In-

tel SPR machine. Next, we show that these PMUs are generally

available and applicable to another Intel EMR server.

Core PMU. We observe consistent core PMU counter behaviors

when accessing CXL memory. As shown in Figure 14 (Appen-

dix A.1), compared to local memory, accessing the slower CXL

DIMM (a) results in 1.3× more SB stalled cycles on average across

six applications in both RD+WR and WR-only scenarios; (b) leads

to an average of 1.3× higher pipeline stall cycles and 1.2× longer
response wait times on L1D; (c) causes 2.7% fewer DRd and RFO hits

on L1D; (d) increases the LFB stall cycles by 1.3×with little changes

in LFB hit rate; (e) yields 1.5× more L2 stall cycles on average, with

HWPF, DRd, and RFO requests experiencing 1.1×, 1.3×, and 1.2×
longer data response times; (f) reduces RFO misses, HWPF hits, and

HWPF misses by 10.8%, 1.5%, and 4.3%. The EMR machine exhibits

smaller increases in stall cycles, and less variation in hit and miss

counts, benefiting from the larger LLC size, but basically shows the

same trend as SPR when accessing CXL memory, with an increase

in stall cycles and a decrease in request frequency.

CHA PMU. These counters are also applicable on the EMR server.

As shown in Figure 15 (Appendix A.1), compared to local memory,

accessing CXL memory (a) leads to 2.1× more stall cycles and 2.2×
higher DRd response time on LLC on average across six applications

compared to the local memory case; (b) decreases the number of

LLC hits for DRd, RFO, and HWPF requests by 6.3%, 16.3%, and 5.6%

on average; (c) causes a 1.1× and 1.3×more LLC misses for DRd and

RFO, while HWPF misses are dropped by 20.5%; (d) increases the

DRd, RFO, and HWPF miss occupancy by 1.5×, 1.3×, and 1.6×; (e)
yields a 2.2%, 1.8%, 3.6%, and 4.3% hit decrease for DRd, RFO, HWPF,

and DWr, along with a 2.3%, 6.8%, 5.2%, and 3.4% miss reduction.

Uncore PMU.We also validate that the functionality and effective-

ness of the uncore PMU on an EMR server are similar to that of the

SPR one. Figure 16-a (Appendix A.1) is consistent with Figure 4-a,

confirming that the CXL memory access bypasses IMC and is man-

aged by a device-side MC. Akin to Figure 4-b, Figure 16-b compares

the load and store traffic between local and CXL DIMMs, providing

DIMM traffic ground truth information.

By comparing PMU counters when accessing local and CXL

memory on both the SPR and EMR machines, we demonstrate that

our PMU-based characterizations and experimental observations

are generally applicable. Further, a large LLC on the EMR platform

helps reduce the core stall cycles and L1D/L2/LLC misses.

3.7 Summary

PMU counters allow us to (a) investigate the impact of slow CXL

memory accesses on microarchitectural pipeline behaviors; (b) clas-

sify and quantify different CXL.mem data paths. Among these PMUs,

CHA, M2PCIe, and CXL PMUs offer ground-truth information on

CXL read/write memory traffic and capture its effects at the uncore

level. Core PMUs enable analyzing CXL memory characteristics

of different paths (i.e., DRd, DWr, RFO, and HW/SW PF) from the

uncore and core private cache to the processor pipeline.

4 PathFinder: a CXL.mem Profiler
Our characterizations (§3) have unearthed the PMU capabilities of

different hardware components across CXL.mem data paths. This

section describes how we build PathFinder using them to address

the above challenges (§2.3). Our system design goals are:

• End-to-end. PathFinder should provide adequate running sta-

tistics about all application-induced CXL.mem data paths and an-

alyze how CXL memory accesses impact the processor pipeline,

cache hierarchy, and FlexBus I/O;

• Profiling-rich. PathFinder should report multifaceted execution

telemetry, including stall cycle, queueing occupancy, and data

locality, at a given epoch, based on the profiling specification;

• Lightweight. CXL.mem transactions run at nanosecond granu-

larity across tens of GB to several TB address spaces. It is pivotal

to ensure that PathFinder incurs minimal system overheads with

a marginal impact on the profiled applications;

4.1 Key Idea and System Overview

Our key idea is to view the server processor and its chipset as a

multi-stage Clos network [30, 38], identify different CXL.mem data
paths, and apply conventional traffic analysis techniques. In the

request direction, the ingress stage is processor cores that feed

load/store instructions into the network, while the egress stage

is CXL DIMMs that serve requests and perform data reading and

writing. The response direction operates vice versa. The middle

stage is each on-path architecture module, working as a switch that

forwards data based on memory addresses. However, in our case, a

middle stage can also become an ingress or egress one when hard-

ware prefetching or caching happens. This indicates that our Clos

network has several sub-Clos networks with non-consistent stages

for different CXL.mem paths. Next, we develop an in-band traffic

telemetry engine for each stage hop to capture aggregated running

statistics using its PMU. Last, we employ networking telemetry tech-

niques, like traceroute [23], reverse traceroute [60], delay-based

analyses [32, 36, 44], and network snapshot [103], and tailor them

to the CXL.mem context to achieve our goals.
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Figure 5: The system overview of PathFinder. (a) shows the profiling task specification. (b) depicts the system model, and (c) illustrates the
PathFinder workflow. PTE=PMU-based Telemetry Engine.

PathFinder is a system utility facilitating CXL development. Its

inputs (Figure 5-a) encompass (1) application programs, where we

support single/multi-tenant profiling; (2) running environments,

such as pinned cores andmapped memory nodes; (3) profiler specifi-

cations, which set up the profiling mode (continuous or aggregated),

tracing granularity, and the max resource consumption; (4) report

specifications, which describe the interested execution statistics.

Based on these configurations, PathFinder outputs profiling sum-

maries periodically or until the application stops, and highlights

notable CXL.mem information, such as what is the access intensity

across different CXL paths, how the data locality varies under CXL

accesses, what is the latency breakdown of load/store/prefetch,

whether there exists a hardware bottleneck blocking some paths,

and how CXL memory flows interfere with other local/CXL ones.

Under the hood, PathFinder performs snapshot-based path-driven

profilings to analyze CXL.mem protocol execution (Figure 5-c). It

takes time series snapshots over our telemetry engines, classifies

transactions based on paths, and examines how concurrent paths

interleave over each on-path module. PathFinder comprises four

techniques: (a) PFBuilder, constructing the CXL data path map via

carefully synthesizing a slew of PMU counters (§4.3); (b) PFEstima-
tor, which employs a back-propagation algorithm that gradually

attributes the CXL-induced stall cycles in a bottom-up fashion to the

CPU pipeline (§4.4); (c) PFAnalyzer, zooming each architectural com-

ponent via white-box modeling and exploring how concurrent CXL

and non-CXL streams interfere with each other (§4.5); (d) PFMate-
rializer, which introduces an internal time-series database, takes a

per-snapshot digest as inputs, and identifies consistent execution

characteristics, such as data locality, contention, and resource under-

utilization ($4.6). Together, PathFinder dissects CXL.mem accesses
and associated applications across the entire server system from

the temporal and spatial dimensions at the required granularity.

4.2 System Model

PathFinder models the server system as a Clos network (Figure 5-b),

represented as 𝐺 = (𝑉 , 𝐸), where (a) 𝑉 refers to architectural mod-

ules, like core, SB, LFB, L1D, L2, CHA, and CXL DIMM; (b) 𝐸 is the

interconnect link, such as on-core hardware FIFO, (mesh) intercon-

nect, and system FlexIO Bus. Each vertex can be a source node (𝑣𝑠𝑟𝑐 )

issuing requests, a destination node (𝑣𝑑𝑠𝑡 ) serving requests, and an

intermediate stage (𝑣𝑖𝑛𝑡 ) with𝑀 ingress and 𝑁 egress ports, which

are all associated with a particular stage (𝑆). We then define a lo-

cal/CXL memory flow (mFlow) as𝐶𝑜𝑟𝑒𝑖 ↔ 𝑙𝐷𝐼𝑀𝑀𝑗 /𝑐𝐷𝐼𝑀𝑀𝑗 (Fig-

ure 5-a), enclosing all the associated load, store, and prefetch com-

mands and responses following the committed order. A mFlow is

(1) application-dependent, whose lifetime aligns with the workload;

(2) location-sensitive, i.e., we would create and initiate a new mFlow

when the thread migrates to a new core or touches the address

space of a new DIMM; (3) bidirectional, capturing both the request

submission and response returning transmission. Thus, an applica-

tion process would include a list of mFlows {𝑚𝐹𝑙𝑜𝑤1, ...,𝑚𝐹𝑙𝑜𝑤𝑛},
whose number is bounded by 𝐶𝑜𝑟𝑒# × 𝐷𝐼𝑀𝑀#.

A mFlow spawns a list of data paths (𝑃 ) based on the data serving

location, each of which is denoted as

∨
𝑣𝑖

𝑒𝑘←→ 𝑣 𝑗 , where 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉
and 𝑒𝑘 ∈ 𝐸. A path is instantiated when a load/store instruction

is issued. It is deterministic based on the address mapping, whose

forward and backward sub-paths are symmetric. PathFinder uses

the PFBuilder (§4.3) to break down path details of all active mFlows.

It takes a snapshot of all PMUs at the end of every OS scheduling

epoch (or when preemption happens) and associates it with the

current running mFlow. We then generate an execution digest,

represented with a memory-efficient data structure. Thus, a mFlow

has a sequence of time-series snapshots {𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡1, ..., 𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑛}
over its lifetime, facilitating our profiling over the time dimension.

4.3 Constructing the Path Map

Our first step is to draw all the paths over each snapshot. Traceroute
is a widely used technique in computer networks to determine

which routers stay on the communication path. The client sends a

probing packet with a predefined TTL (time-to-live) value. Each on-

path router receiving the probing decrements the field and replies

to an ICMP time-exceeded message [11] when TTL becomes 0. One

would then figure out the packet path by gradually incrementing

the TTL field until reaching the destination. However, such a trac-

ing scheme is infeasible in our case due to the non-programmability

of on-path micro-architecture hardware components. Load/store

requests and responses usually traverse a deterministic path, in-

structed by the memory address. One possible solution is to analyze

the destination address region and work with the server vendor

to demystify the caching policy, multi-tier cache structure, and



NoC (Network-on-Chip) routing algorithm. For example, the recent

432-core RISC-V server processor Occamy [87] open-sources its

architectural details. This would not work for commodity server

processors. Fortunately, we find that PMUs report path-specific

hit-and-miss information (§3) at different locations, allowing us to

reconstruct the path map within a snapshot.

We develop the PFBuilder mechanism guided by Table 5 (Appen-

dix A.2). For each mFlow, it first examines its home core PMU and

computes the per-path traffic load based on how many DRd/RFO/

PF/DWr hits happen at SB, L1D, LFB, and L2. Next, it walks through

the PMU hierarchy in a top-down fashion and analyzes the CHA

PMU. Since each core can send load/store commands to all CHAs,

the next hop after L2 becomes unclear, hinging on the propriety

routing logic, LLC slice caching, and destination address. We find

a special hardware module–called TOR (Table of Requests) in the

Intel processor, which records the core-CCA mapping for differ-

ent types of requests (see unc_cha_tor_inserts in Table 5). This

helps us continue building the path map for missing commands

from L2. The AMD Zen processor has a functionally similar compo-

nent in its core complex die (CCD). Note that LLC request serving

has several scenarios. Specifically, a miss would be first served by

(a) the core’s local LLC slice, (b) followed by a distance LLC slice

from a Sub-NUMA cluster (when a processor has chiplets), and (c)

finally followed by a remote LLC slice from another CPU socket. (b)

and (c) are triggered by request snooping. Finally, if requests were

missed from LLC/CHA, they would go through MC and arrive at

the DIMM. We use local MC counters at the socket level for local

memory access and M2PCIe uncore counters to track the FlexBus

transactions to CXL DIMMs. In sum, a path map describes all the

mFlow-induced paths with quantitative traffic loads (defined as the

number of traversed requests). A snapshot, taken at the end of a

scheduling window, is always associated with a particular thread.

However, when there are multiple concurrent flows (e.g., a core

accessing different DIMMs), PathFinder can classify paths whose

destinations are beyond LLC since their PMUs can report target-

dependent statistics (as shown in Table 5), but not the on-core ones

as all path hits are mingled in the counter.

4.4 Breaking down CXL-Induced Pipeline Stall

The longer CXL accesses slow down data fetching, inevitably caus-

ing execution stall along the pipeline. PathFinder examines the stall

cycles of every hardware component and aims to tease out the CXL-

induced part. The challenge is how to separate the combined effect

between CXL transactions and other architectural factors (like local

memory access and cache coherence execution). Inspired by reverse

traceroute [60] from the computer networks, we develop a back-

propagation approach (PFEstimator) that incrementally attributes

the stall overhead from CXL DIMMs to cores.

PFEstimator works as follows (ALG 2 in Appendix A.3). Starting

from the CXL_DIMM MC, it checks which FlexBus root access

ports (RCs) have issued requests in the current snapshot, com-

putes their aggregated traffic loads of all active paths, and propor-

tionally distributes the load/store queueing occupancy (obtained

from the unc_cxlcm_rxc_pack_buf counters) to these RCs (L2-

L9). The queue buildup at a CXL DIMM MC happens because its

memory command handling rate (egress) cannot catch up with

the request arrival rate (ingress). Next, we move backward to the

Algorithm 1 The Delay-based PFAnalyzer Algorithm.

1: HAL: the hardware abstract representation that contains its PMU

counter statistics and all housed path/mFlow information;

2: Q: queue length array;

3: procedure HW_Occupancy_Detection(HAL module)

4: for p in module.all_cxl_paths do
5: for c in module.all_components do
6: if c == L2 or c == L1D or c == LLC then
7: 𝜆ℎ𝑖𝑡 = c.hits[p]/c.clocks;

8: 𝜆𝑚𝑖𝑠𝑠 = c.misses[p]/c.clocks;

9: 𝑊ℎ𝑖𝑡 = c.delay_hit;

10: if c == LLC then
11: 𝑊𝑚𝑖𝑠𝑠 = c.delay_miss; ⊲ LLC

12: else
13: 𝑊𝑚𝑖𝑠𝑠 = c.delay_tag; ⊲ core L2,L1D

14: Q[p][c]=𝜆ℎ𝑖𝑡 *𝑊ℎ𝑖𝑡+𝜆𝑚𝑖𝑠𝑠 *𝑊𝑚𝑖𝑠𝑠 ;

15: else ⊲ core LFB,RAM

16: 𝜆ℎ𝑖𝑡 = c.hits[p]/c.clocks;

17: 𝑊ℎ𝑖𝑡 = c.delay_hit;

18: Q[p][c]=𝜆ℎ𝑖𝑡 *𝑊ℎ𝑖𝑡 ;

19: culprit_path = MAX_OCC(Q);

FlexBus RC�Host Uncore segment and divide the FlexBus waiting

(credit starvation) cycles–unc_m2p_rxc_cycles_ne). The estima-

tion works similarly (L10-L18) except that the stall cycle needs

to consider the inherited part from the last segment (L12). Af-

ter that, PFEstimator examines the Host Uncore�CHA path seg-

ment and proportionally attributes its RPQ (read pending queue)

and WRQ (write pending queue) delay (i.e., unc_m_rpq_cycles_ne
and unc_m_wpq_cycles_ne) to different CHAs (L19-L27). Since

the uncore is shared between local and CXL memory streams,

get_Uncore_stall_cycle takes the CXL DIMM ID as input and

reports the DIMM-specific value (L21). As discussed in §2.2, within
a CHA, there is a mapping between LLC slices and CCDs. We fur-

ther partition the stalled cycles (observed via TOR) proportional

to individual slices. This works similarly to Host Uncore�CHA.

Finally, for all the in-core path segments (Core LLC � L2 � LFB

� L1D � SB), the CXL-induced stall cycles are back-propagated

to each on-path module as above while piggybacking a propor-

tional stall cycle share (like L21). Note that algorithm 2 sketches

a generic description and the actual implementation would use

different counters for load (read) and store (write) requests.

4.5 Detecting Culprit Paths at Bottlenecked HW

Next, PathFinder locates the hardware contention point along the

pipeline, explores the performance interference of concurrent paths,

and identifies the culprit. However, due to the hardware opaqueness,

it is challenging to know how different mFlows interact with each

other and share the hardware resources. Delay-based queueing

analysis [32, 36, 44] has been demonstrated in computer networks.

The idea is to attribute the queueing occupancy of a flow to the

individual flow based on its delay variation. We introduce a similar

approach (called PFAnalyzer), which leverages Little’s Law and the

delays observed by the core when requesting data from different

components to attribute the queueing degree of flows.

PathFinder views each hardware (vertex) in the Clos network

graph as a software switch and models it as a queueing model. An

observation driving our delay-based analysis is that the PMU of



an architectural module generally encloses two counters (§3): (a)
one counting the hit and miss frequency (HitCnt,MissCnt), which
relates to the data locality and total amount of allocated resource

from the last epoch; (b) the other reporting the data response time

(Delay), which indicates how long the requests would be served.

Except for interconnect routing, components along the data path

can be modeled as a variant of the FCFS queue (S3-FIFO [102]).

PFAnalyzer combines the HitCnt, MissCnt, and Delay, and applies

Little’s Law to estimate the average queue length per cycle as 𝐿 =

𝜆 ∗𝑊 . We attribute the core-observed request latency to each on-

path component by computing the latency difference between the

current hop and the previous hop, used as the delay𝑊 .

For components that forward miss requests to lower levels, we

use the following extended formulation, 𝐿 = 𝜆ℎ𝑖𝑡 ∗𝑊ℎ𝑖𝑡 + 𝜆𝑚𝑖𝑠𝑠 ∗
𝑊𝑚𝑖𝑠𝑠 , where (a) 𝜆 denotes the request arrival rate, obtained from

the component’s mFlow hit/miss counters and clock ticks; (b)𝑊ℎ𝑖𝑡

represents the time required to serve data on a hit.𝑊𝑚𝑖𝑠𝑠 is location-

dependent. For L1D and L2, we use𝑊𝑡𝑎𝑔 as𝑊𝑚𝑖𝑠𝑠 , which captures

the time spent on tag lookup to determine whether data exists.𝑊𝑡𝑎𝑔

is assigned a constant cycle value based on the hardware capacity

and associativity. For LLC, we use the request miss delay as𝑊𝑚𝑖𝑠𝑠 ,

since missing requests remain in the CHA TOR queue until they

are completed. For LFB and DIMM, as the LFB load is part of the

uncore path [98], and memory holds the complete data set that is no

longer forwarded, we adopt the 𝐿 = 𝜆ℎ𝑖𝑡 ∗𝑊ℎ𝑖𝑡 model. Algorithm 1

sketches how PFAnalyzer works. For DRd, RFO, and HWPF paths,

we apply different models to estimate the queueing degree at each

component along the path. At L1D, L2, and LLC, both hit and

miss accesses are included in the queue length estimation (L6-L14).

At LFB and DIMM, only hit accesses are considered (L15–L18).

Finally, the component and path with the maximum queue length

are identified as the culprit of the current snapshot (L19).

4.6 Synthesizing Multi-Snapshots

PathFinder summarizes execution characteristics via cross-snapshot

analysis. We employ a time-series database (like InfluxDB [5]), en-

capsulate a snapshot as a compacted record, and conduct time-series

analysis. Our record, tagged by the timestamp, uses a hierarchical

tree representation based on the system model (§4.2), including
edges, vertices, mFlows, and paths tables. An edge is further divided

into the traversed path list (§4.3), traffic load, available bandwidth,

and queueing degree (§4.4). A vertex adopts an abstract hardware

model, contains its PMU counters, and captures how resources are

allocated among contending paths (§4.5). A mFlow/path encom-

passes basic routing information and running metadata statistics.

Our approach (PFMaterializer) provides a CLI interface, takes a
user-interested scenario as input, and translates it into a sequence

of InfluxDB Flux queries to explore insights. Supposing we are ana-

lyzing the application’s LLC temporal data locality when accessing

CXL memory. First, PFMaterializer determines the query scope that

contains the application-spawned paths whose destination is LLC,

i.e., FROM "path_set" WHERE "path.mflow.pid = APP_PID" AND
"path.dst=LLC". Second, we look at the counter hit field and get

some overall statistics via some operators, such as min(), max(),
avg(), and movingAverage(). Third, PFMaterializer employs the

time series cluster technique [29] and partitions snapshots into

multiple windows with similar hits. The window length reflects

how long an application stays consistently in the current phase.

Fourth, PFMaterializer applies classical time series analysis (TSA)

techniques [53] to explore data trend, seasonality, and residual

(or anomaly). For example, it can use the Holt-Winters forecast

method–holtWinters()–to search regular patterns, which would

indicate if an application exhibits some predictable data accesses.

Last, thanks to the time-series database capability, we can cross-

check other applications’ mFlows/paths in the same time window

or at the same timestamp, use some correlation detection meth-

ods, like pearsonr(), and identify locality-impacting factors from

the application layer. This workflow is generally applicable and

can be easily extended via other queries. By layering a time-series

database atop the PathFinder system core, we enable many other

architectural-level CXL-related performance profiling, like spatial

data locality, computing burst, and execution orthogonality. We

will open-source and continuously develop more workflows.

5 Evaluation

5.1 Experimental Methodology

Hardware testbed.We conduct experiments on two types of hard-

ware platforms. The first is a dual-socket Sapphire Rapids (SPR)

server with Sub-NUMA Clustering (SNC) enabled. It is equipped

with one CXL Type-3 memory device that appears as a CPU-less

NUMA node and runs on Linux 6.5 kernel with CHA PMU support

patches. Our experiments run on a 2U Supermicro server that has

two Intel Xeon Gold 6438Y+ processors and 256GB DDR5. The CPU

has 32 cores running at 2.0 GHz and 60MB LLC. Each core has 48KB

L1D and 2MB L2. We disable hyperthreading and Turbo Boost. Our

CXL Type-3 memory device is based on the Intel Agilex I-Series

card [6] enclosing 16GBDDR4. The second platform is a dual-socket

Emerald Rapids (EMR) server. It uses 256GB CXL Type-3 memory

device Micron CZ120 CXL DIMMs configured as CPU-less NUMA

node and runs on Linux 6.15 kernel. The server features two Intel

Xeon Gold 6530 processors and 1536GB DDR5 memory. The CPU

consists of 32 cores with 160MB LLC, and each core includes 2MB

L2 and 48KB L1D cache. Both servers are equipped with per-core

PMUs, 64 CHA PMUs, and use IMC and M2PCIe PMUs to monitor

local and CXL memory accesses, respectively.

Workload. We evaluate PathFinder using 77 applications from

various benchmark suites, including Redis [14] and YCSB [39],

graph processing GAP [33], PARSEC [35], SPLASH-2x [105], and

SPEC CPU 2017 [17]. PathFinder provides a CLI interface with

different command parameters to enable various functionalities.

5.2 Case 1: Path Classification

PFBuilder uses the PMU hit/miss counters to figure out the precise

request paths, reporting the total amount and distribution of request

hits and misses at each cache hierarchy and DIMM component

from a core to the destination. This shows detailed memory access

behaviors and traffic changes along different paths.

Table 7 (Appendix A.5) demonstrates PFBuilder’s path mapping

capabilities when running SPEC CPU2017 applications over CXL

memory. It reports the path distribution for DRd, RFO, HWPF, and

DWr. For example, in 649.𝑓 𝑜𝑡𝑜𝑛𝑖𝑘3𝑑_𝑠 , the per-core hot path is DRd.

At the uncore, the hot path is HWPF, accounting for 59.3% of uncore

accesses. Further, PFBuilder shows that the CXL memory hits are

8.1× more than the local LLC hits, and HWPF paths account for
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Figure 6: We break down CXL-induced stall cycles of SB, L1D, LFB,
L2, CHA/LLC, FlexBus+MC, and CXL DIMM.

89.1% of those CXL memory accesses, suggesting that CXL memory

heavily influences L1D and L2 behavior through the HWPF path. As

another example, we compare two selected snapshots in 602.𝑔𝑐𝑐_𝑠 ,

and find out that the total number of core-issued requests (from

DRd, RFO, and DWr hits across all components) increases by 5.8×
in snapshot 2 compared to snapshot 1. PFBuilder allows us to drill

down into the CXL memory hit analysis: (a). The total amount of

DRd requests only slightly increases from 25.9% to 27.7%, indicating

that the cache hierarchy largely absorbs the additional DRd traffic;

(b). In contrast, RFO requests rise from 1.1% to 69.0%, meaning that

a large amount of data is loaded from the CXL memory.

5.3 Case 2: Pipeline Stall Breakdown

PathFinder can examine the CXL-induced stall cycles and provide

a breakdown through PFEstimator (§4.4). This functionality allows

developers to understand (a) how efficient the CXL accesses are

from the processor pipeline perspective; (b) how many stall cycles

are added from SB to FlexBus+MC. However, in a mixed memory

traffic scenario [79, 97], PMU stall cycle counters capture the com-

bined impact of both local and CXL memory paths. Separating

stalls based solely on the proportion of request miss targets is in-

accurate [95]. PFEstimator adopts a bottom-up back-propagation

approach to tease out the CXL-induced portion from the total stall

counters and presents a stall breakdown to unearth the extent each

component is affected by CXL memory.

Figure 6 reports the breakdown for six applications. Regarding

fft, its stall delay of the DRd path is distributed across 7 components

(L1D, LFB, L2, LLC, CHA, FlexBus+MC, and CXL DIMM) with a per-

centage of 5.7%, 0.0%, 5.5%, 3.9%, 1.7%, 42.7%, and 40.3%, indicating

that DRd execution stalls are more pronounced in the uncore. How-

ever, raytrace experiences a higher stall at FlexBus and MC with

67.1%. Regarding RFO, we observe a breakdown of 1.9%, 0.0%, 1.6%,

0.9%, 6.3%, 3.3%, 58.0% and 1.3%, 0.01%, 0.07%, 0.03%, 4.3%, 59.3%,

35.0% stalls happen for barnes and freqmine applications across the
data path. The hardware prefetch also causes a stall. For example,

we find that 45.2% and 52.7% stall cycles come from FlexBus+MC

and CXL DIMM for the fft application, similar to the DWr paths.

Next, we show the advantage of capturing the CXL memory im-

pact through bottom-up back-propagation. In a hierarchical cache

system, CXL-induced stalls gradually diminish from the uncore

toward the core due to locality. For example, in Figure 6-a, CXL-

induced stalls on the DRd and RFO paths decrease by an average

of 74.5% and 67.8% from FlexBus+MC to L1D. The PFEstimator’s
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Figure 7:We present the pipeline stall cycle as varying the CXL traffic
load. (a), (b), (c), (d), (e), and (f) report the behavior for SB, L1D, LFB,
L2, core LLC, and FlexBus+MC, respectively.

back-propagation approach can dissect the reduced CXL memory

impact from LLC to L2/L1D. SB benefits from L1 data locality, with

DWr path stalls decreasing by 90.6% on average from FlexBus+MC

to SB. Besides, HWPF CXL-induced stalls on FlexBus+MC are cor-

related with DRd CXL-induced stalls on L1D and L2 (Figure 6). For

instance, in BFS, there is a 353.5ns HWPF stall on the FlexBus+MC

corresponding to 209.8ns and 179.46ns DRd stalls on L1D and L2,

respectively. In contrast, for FREQ, we observe a 92.2 ns HWPF stall

on FlexBus+MC with only a 13.4ns and 0.7ns stall on L1D and L2.

PFEstimator can implicitly capture the effectiveness of L1D and L2

hardware prefetchers in mitigating the impact of CXL memory.

5.4 Case 3: Local v.s. CXL Access Interference

Although there is no memory channel contention between local

mFlow and CXL mFlow, resource contention on other host com-

ponents can cause severe interference. PathFinder can detect and

analyze interference between local and CXL mFlows. We configure

a case where a local mFlow and a CXL mFlow are located on the

same core, and vary the CXL traffic load gradually from 20% to 100%.

PathFinder first identifies potential interference between local and

CXL mFlows by analyzing the uncore target request distribution

reported by PFBuilder. PFAnalyzer and PFEstimator then dissect

the interference. As shown in Figure 8-d, the queueing effect at

the FlexBus and CHA stays stable. However, CXL-induced stall

within a core is increased by 1.7×, 2.2×, 2.2×, 2.4×, and 2.4× on SB,

L1D, LFB, L2, and core LLC, respectively (Figure 7-a/b/c/d/e). Even

though FlexBus and CHA are not congested, PFEstimator captures

the increased queueing within the core. PFAnalyzer further con-

firms the impact on core components by reporting rising queue

lengths of LFB and L2 (Figure 8-b/c), particularly for the DRd path.

PFAnalyzer also shows that increased CXL-induced stalls degrade

L1D locality, which results in (a) heavy queueing at L2 and (b) long
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Figure 8: We present the component queue length as varying the
CXL traffic load. (a), (b), (c), (d) report the behavior for L1D, LFB, L2,
and FlexBus+MC, respectively.

L2 request serve latency, making the core bottleneck shift from

DRd on L1D to DRd on L2. A combination of path-level request

distribution analysis, stall time back-propagation, and queue length

estimation based on enqueue and dequeue rates enables dissect-

ing interference between local and CXL mFlows and the resulting

performance degradation of affected components.

5.5 Case 4: Concurrent CXL Access Contention

PathFinder can also analyze interference among CXLmFlows. PFEs-

timator leverages a back-propagation algorithm to compute CXL-

induced stall time for each component, enabling it to capture how

CXLmFlows interference pressure propagates backward from shared

FlexBus to each core. In parallel, PFAnalyzer localizes the bottleneck

and characterizes path states under neighboring CXL mFlows con-

tention from core-issued requests and memory subsystem served

requests. When CXL mFlow traffic increases from 20% to 100%,

YCSB mFlow throughput is decreased by an average of 77.4% (Fig-

ure 9-a). All CXL mFlows originating from different cores aggregate

at FlexBus+MC before reaching the CXL memory, and PFEstima-

tor captures a 4.3× increase in FlexBus+MC latency (Figure 9-h),

PFAnalyzer shows that the queueing degree of FlexBus+MC DRd

and HWPF is increased by 4.6× and 1.2× (Figure 10-e/f), indicating

that contention and blocking among CXL mFlows first manifest in

the uncore FlexBus+MC. Figure 9-g shows that CHA latency rises

by 1.6×, suggesting that (a) CHA cannot fully hide the interference

across CXL mFlows; (b) the growing memory pressure from CXL

memory propagates upward along the hierarchy and impacts core

component performance. YCSB mFlow LLC experiences a 1.8× in-

crease in CXL-induced stall time (Figure 9-f) and a 3.4× increase

in queueing degree (Figure 10-d), suggesting CXL mFlows on LLC

are not isolated and request interleaving occurs. Although CXL

mFlows from different cores do not interleave at the individual core,

the increased uncore interference still affects the core components.

As shown in Figures 9-b/d/e, CXL-induced stall time on the SB,

LFB, and L2 increases by 2.1×, 2.9×, and 1.8×, with 1.6× and 1.2×
increased queueing degrees of LFB and L2 (Figure 10-b/c), indicat-

ing that uncore contention among CXL mFlows indeed indirectly

affects private core components. When YCSB mFlow CXL-induced

stall on the L1D rises by 1.7×(Figure 9-c), the L1D queueing degree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20  30  40  50  60  70  80  90  100

T
h
ro

u
g
h
p
u
t 
(o

p
s
/s

 e
+

4
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(a) Application Throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 20  30  40  50  60  70  80  90  100

S
ta

ll 
T

im
e
s
 (

n
s
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F
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(f) Core LLC.
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Figure 9: We present application performance and pipeline stall
cycles while increasing the CXL mFlow load from 20% to 100%.
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(b) LFB.

 0

 0.5

 1

 1.5

 2

 2.5

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(c) L2.
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(d) Core LLC.
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(e) FlexBus+MC (DRd).
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(f) FlexBus+MC (HWPF).

Figure 10: We present the queue length while increasing the CXL
mFlow load from 20% to 100%. (a), (b), (c), and (d) present L1D, LFB,
L2, and core-accessed LLC queue length. (e) and (f) present the
FlexBus+MC queue length for DRd and HWPF, respectively.
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Figure 11: We examine the relationship between CXL bandwidth
partition among concurrent CXLmFLows. (a) shows the results using
4 MBW programs with bandwidths of 500 MB/s, 700 MB/s, 1000 MB/s,
and 3700MB/s; using 4 GUPS programs with bandwidths of 650MB/s,
1250 MB/s, 2200 MB/s, and 2800 MB/s. (b) shows the relationship
between CXL memory request frequency and runtime bandwidth.

drops by 41.0% (Figure 10-a). PFAnalyzer accounts for the decreased

core issue request rate and correctly identifies that L1D queueing

decreases, while the mFlow bottleneck gradually shifts from DRd

on L1D to HWPF on FlexBus+MC. In summary, PathFinder en-

ables per-mFlow path-level analysis to identify interference, such

as where the contention occurs, which request types dominate, and

how each mFlow is indirectly affected in its core components.

5.6 Case 5: CXL Bandwidth Partition

Understanding bandwidth allocation among concurrent CXL mem-

ory streams is a challenging task for application developers. PathFinder

can assist in identifying the bandwidth among mFlows when the

saturated CXL device bandwidth becomes a bottleneck for the

host network. We evaluate this in 2 scenarios, i.e., 4 MBW in-

stances contention and four GUPS instances contention, both cause

FlexBus+MC to be saturated. Bandwidth competition reduces the

bandwidth of each mFlow (Figure 11-a). But due to varying mem-

ory access patterns, the bandwidth degradation is not uniform

across mFlows. For example, MBW-2 experiences a 37.7% drop,

while MBW-4 is degraded by 74.7%. However, under severe FlexBus

contention, PathFinder can estimate runtime bandwidth allocation

based on each mFlow’s demand on the uncore FlexBus. When the

CXL memory access latency increases to 974.9ns and 753.6ns, se-

vere FlexBus blocking occurs. PFAnalyzer detects the maximum

queue length at FlexBus, indicating that each mFlow’s performance

is largely determined by FlexBus. Moreover, the system observes

a Pearson correlation coefficient as high as 0.998 between each

mFlow’s CXL memory request frequency and its application-level

reported bandwidth (Figure 11-b). Therefore, when PFAnalyzer

identifies the culprit path at FlexBus+MC, the system can lever-

age PFBuilder’s report of CXL memory request frequency to infer

bandwidth allocation among concurrent CXL mFlows at runtime.

5.7 Case 6: Data Locality

PathFinder can report the data locality changes across multiple

snapshots using PFMaterializer (§4.6) to cluster the hit distribution

of historical data, identify windows with stable memory access

patterns, and report components with data locality changes when

mFlow is disturbed. By walking through a sequence of snapshots,

PathFinder examines how historical PMU counter statistics, cap-

tures the data locality trend, and further analyzes if co-located work-

loads contend the memory subsystem. For example, as shown in Fig-

ure 12, PathFinder shows that the LLCmisses are decreased by 20.6%

when co-locating with 519.𝑙𝑏𝑚_𝑟 compared with the 554.𝑟𝑜𝑚𝑠_𝑟
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(b) 503.𝑏𝑤𝑎𝑣𝑒𝑠_𝑟 locality changes when launching 554.𝑟𝑜𝑚𝑠_𝑟 .
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(c) 503.𝑏𝑤𝑎𝑣𝑒𝑠_𝑟 data locality under multiple applications.

Figure 12: We monitor 503.𝑏𝑤𝑎𝑣𝑒𝑠_𝑟 application data locality
changes when launching different applications. (a) Launch 519.𝑙𝑏𝑚_𝑟
application accesses local memory. (b) Launch 554.𝑟𝑜𝑚𝑠_𝑟 applica-
tion accesses CXL memory, further impacting 503.𝑏𝑤𝑎𝑣𝑒𝑠_𝑟 data
locality. (c) A combination of 519.𝑙𝑏𝑚_𝑟 , 505.𝑚𝑐𝑓 _𝑟 , and 554.𝑟𝑜𝑚𝑠_𝑟
applications accessing both local and CXL memory, introduce an
additional interference effect to 503.𝑏𝑤𝑎𝑣𝑒𝑠_𝑟 data locality.

case, indicating that 503.𝑏𝑤𝑎𝑣𝑒𝑠_𝑟 is more execution-friendly when

running with the 519.𝑙𝑏𝑚_𝑟 .

5.8 Case 7: Performance Optimization Using PathFinder

We first use PathFinder to understand how TPP [79] helps improve

the application performance. When TPP is enabled, we observe that

(a) YCSB-C, under the Zipf access pattern with a local/CXL memory

ratio of 4:1, reduces its query latency by 2.5%; (b) GUPS with 24GB

hot set, 72GB total working set, 1:1 read-write ratio, and 90% hot set

access probability, under the same memory configuration, improves

its throughput by 3.0×; and (c) 649.𝑓 𝑜𝑡𝑜𝑛𝑖𝑘3𝑑_𝑠 application reduces
its execution time by 14.3% with a 2:1 local/CXL memory ratio.

As shown in Figure 13-a, PFBuilder traces collected from the

core and M2PCIe PMU for YCSB-C, GUPS, and 649.𝑓 𝑜𝑡𝑜𝑛𝑖𝑘3𝑑_𝑠

demonstrates increased local memory access and decreased CXL

memory access when TPP is enabled. For instance, GUPS shows

a 7.4×/1.7×/3.3× increase in DRd/RFO/HWPF local memory hits

from core PMU, while the corresponding hit counts on CXL mem-

ory decrease by 87.2%/93.4%/87.7%. For the M2PCIe PMU, closest

to the CXL memory, load and store requests to the CXL memory

are reduced by 84.6% and 84.4%, respectively. These results align

with the TPP design, which migrates hot pages and shifts memory

access towards local memory. We then use PFEstimator for further

analysis. Figure 13-b shows that TPP reduces the average CHA ac-

cess latency of DRd/RFO/HWPF/DWr requests and provides faster

uncore serviceability. It observes the FlexBus+MC latency reduc-

tion, confirming that TPP constrains traffic along the CXL memory



1

10
2

10
4

10
6

10
8

10
10

DRd-L RFO-L HWPF-L DRd-C RFO-C HWPF-C M2P-LD M2P-ST

H
it
 C

o
u

n
t 

(#
)

YCSB-C-w/o TPP
YCSB-C-w/ TPP

FOTS-w/o TPP
FOTS-w/ TPP

GUPS-w/o TPP
GUPS-w/ TPP

(a) Hit event.

1

10

10
2

10
3

10
4

CHA-DRd CHA-RFO CHA-HWPF CHA-DWr FMC-DRd FMC-RFO FMC-HWPF

S
ta

ll 
T

im
e

 (
n

s
)

YCSB-C-w/o TPP
YCSB-C-w/ TPP

FOTS-w/o TPP
FOTS-w/ TPP

GUPS-w/o TPP
GUPS-w/ TPP
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Figure 13: (a) shows hit event comparison of local and CXL memory
for the YCSB-C, 649.𝑓 𝑜𝑡𝑜𝑛𝑖𝑘3𝑑_𝑠, and GUPS applications with TPP
disabled and enabled. (b) illustrates the stall data path comparison
of CHA and FlexBus+MC with TPP disabled and enabled.

path, thus lowering overall uncore latency. Taking GUPS as an ex-

ample, the latency of DRd/RFO/HWPF FlexBus+MC is reduced by

78.6%/83.5%/79.1%, resulting in an 82.9%/85.8%/88.0% corresponding

uncore serving latency reduction. Last, we cross-validate with TPP

by analyzing the application culprit path queueing degrees reported

by PFAnalyser. When enabling TPP, YCSB-C culprit path (DRd on

LFB) shows a 3.6% queueing degree decrease; the queueing of the

GUPS culprit path (LD on FlexBus+MC) is dropped by 96.0%; and

there is an 82.1% queueing reduction in the 649.𝑓 𝑜𝑡𝑜𝑛𝑖𝑘3𝑑_𝑠 culprit

path (DRd on L1D), which demonstrate that TPP’s page promotion

and demotion mechanism mitigates application bottlenecks.

We also use PathFinder to optimize the memory tiering mecha-

nism. Take TPP+Colloid as an example [97]. Colloid aims to balance

access latencies and guides TPP page migration at runtime using

per-tier memory latency (i.e., CHA miss latency of DRd requests

from different memory tiers). We explore a dynamic TPP+Colloid

approach that PathFinder assists Colloid at runtime. It uses PFBuilder-

reported CHA miss ratios of DRd/RFO/HWPF requests to select the

most frequently accessed request type during the current execution

phase, and then uses the corresponding local/CXL memory latency

of the chosen type (obtained from PFEstimator) in place of Colloid’s

fixed DRd latency. This makes hot page migration better adapt to

application memory access characteristics. Our evaluation shows

that this approach can improve GUPS throughput by 1.1×.

5.9 Discussion

Limitation. Due to the lack of PMU counters specifically designed

for RFO and HWPF requests within the core, PFBuilder and PFEs-

timator are limited. As shown in Table 7 produced by PFBuilder,

we are unable to monitor RFO and DWr type requests at the L1D

and LFB levels. The RFO counter at L2 indiscriminately includes

both demand and prefetch RFO requests. PFEstimator faces similar

issues when relying on core PMU data, the stall cycles at L1D, LFB,

L2, and LLC are reported only for demand load requests and cannot

be further broken down by access type. Future hardware with more

advanced PMU capabilities would help resolve these issues.

System overheads. We measure the CPU cycles and memory

footprint when enabling and disabling PathFinder. On average

across all the workloads, it consumes 1.3% CPU cycles and 38MB

of memory with a marginal impact on the application execution.

6 Related Work

Profiling Systems. People have developed many software utilities

to identify code hotspots, analyze concurrency dependency, and

break down stalled cycles [2, 8, 31, 37, 40, 42, 47, 48, 58, 59, 78, 96,

104]. Linux perf [40] is a widely used tool to instrument CPU per-

formance counters, tracepoints, and report application execution

statistics. Intel VTune [8] takes a top-down analysis strategy [104]

and drills down the performance analysis using architectural coun-

ters. Some are also integrated into the language system, facilitating

application development [2, 37, 48, 54, 61, 73, 76, 88–90, 92, 107].

PathFinder is built atop the Linux perf and PMUs.

Memory and Storage Disaggregation. People have explored

disaggregated memory and storage extensively, given the rising

networking bandwidth, fast remote storage protocol, and new clus-

ter interconnect [49, 50, 56, 57, 62–64, 66–68, 71, 74, 75, 77, 79, 81–

83, 91, 93–95, 99, 101, 106, 108]. For example, Ana Klimovic et al.
characterize the performance of iSCSI-based disaggregated stor-

age [62]. i10 [56] develops an efficient in-kernel TCP/IP remote stor-

age based on dedicated end-to-end IO paths and delayed doorbell

notifications. Pond [66] extends CXL memory into disaggregated

memory pools and effectively uses the stranded and used mem-

ory. Caption [95] provides an in-depth comparison between CXL

memory and NUMA emulated CXL memory, and proposes a CXL

memory-aware page allocation policy that efficiently utilizes the

CXLmemory expander. Melody [68] extensively characterizes appli-

cation access patterns on the CXL memory and proposes a runtime

slowdown modeling framework to diagnose performance degra-

dation code regions and components. We believe that PathFinder

can help democratize the CXL.mem protocol and facilitate the

deployment of CXL-based memory pooling.

Host Networking. Host interconnects have become a bottleneck

under high-bandwidth networks. Researchers have developed bench-

marking frameworks and diagnostic tools to analyze it [26–28, 52,

55, 70, 72]. For example, Saksham Agarwal et al. [28, 98] analyze the

host congestion issues and build the host congestion control proto-

col. Hostping [70] monitors and diagnoses intra-host bottlenecks

in RDMA networks. We focus on the CXL.mem protocol.

7 Conclusion

This paper presents a profiling and development utility for CXL.mem.
It enables developers to understand and analyze the CXL.mem exe-
cution in an end-to-end manner. Our key idea is to view the server

processor and its chipset as a multi-stage Clos network, equip each

architectural module with a PMU-based telemetry engine, track

different CXL.mem paths, and apply conventional traffic analysis

techniques. We build PathFinder over Linux Perf and apply it to

seven case studies. This work does not raise any ethical issues.
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Appendix A Appendix

A.1 Characterization Results on an Intel EMR Server

Figures 14, 15, 16 report the core PMU, CHA PMU, and uncore PMU

counters when running characterization experiments on an Intel

EMR machine.

A.2 Performance Counter Details

Tables 1, 2, 3, and 4 summarize the major performance counters

used by PathFinder in the core PMU, CHA/LLC PMU, uncore PMU,

and CXL device. Table 5 shows the counters used by PFBuilder.

A.3 PFEstimator Algorithm

Algorithm 2 shows the details of PFEstimator.

A.4 Application Configuration

Table 6 summarizes our evaluated applications and their configura-

tions.

A.5 More Evaluation Results

Table 7 shows path mapping for SPEC CPU2017 applications ac-

cessing CXL memory by PFBuilder.
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Figure 14: We compare core performance counters when running
in the local and CXL memory cases on an Intel EMR machine. Our
experimental configurations are similar to the ones used in Figure 2.
(a) reports the core stall cycles of six applications when the store
buffer becomes full under the read/write mixed and write-only cases.
(b) and (c) present the L1D characteristics from the execution and
operation perspectives, respectively. (d) shows the LFB counter sta-
tistics. (e) presents the core stall cycles and data responses under L2
misses, while (f) depicts the L2 operation breakdown.
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Figure 15: We compare CHA PMU when running in the local and
CXL memory cases on an Intel EMR machine. Our experimental
configurations are similar to the ones used in Figure 3. (a) reports
the core LLC stall cycles. (b) presents the LLC hit/miss breakdown.
(c) shows where the missed LLC requests are served. (d)/(e) report
the occupancy of LLC hits and misses. (f) depicts the LLC operation
breakdown. The y-axis of (d) and (e) is log-scale.
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(b) Load/Store Breakdown.

Figure 16: We compare Uncore PMU of applications running in the
local and CXL cases on an Intel EMR machine. Our experimental
configurations are similar to the ones used in Figure 4. (a) reports
the channel occupancy of RPQ and WPQ. (b) breaks down the load
and store commands.



Architectural
Component Scope Counter Description

SB

per-core resource_stalls.sb Counts stall cycles caused by the store buffer being full where loads are still issued to avoid execution stall

per-core exe_activity.bound_on_stores Counts cycles where the store buffer was full and no loads caused an execution stall

L1D

per-core cycle_activity.cycles_l1d_miss Counts cycles while L1D cache miss demand load is outstanding

per-core memory_activity.stalls_l1d_miss Counts execution stall cycles while L1D cache miss demand load is outstanding

per-core l1d.replacement Counts L1D data line eviction

per-core mem_load_retired.l1_hit Counts retired load instructions hit in the L1D cache

per-core mem_load_retired.l1_miss Counts retired load instructions missed in the L1D cache

LFB

per-core mem_load_retired.fb_hit Counts retired load instructions missed in L1 but hit LFB due to preceding miss to the same cache line

per-core l1d_pend_miss.fb_full Counts number of cycles a demand request has waited due to LFB unavailability

L2

per-core mem_load_retired.l2_hit Counts retired load instructions with L2 cache hits as data sources

per-core mem_load_retired.l2_miss Counts retired load instructions missed L2 cache as data sources

per-core mem_store_retired.l2_hit Count retired store instructions hit L2 cache

per-core l2_rqsts.references Counts all requests that were hit or true misses in L2 cache

per-core offcore_requests.all_requests Counts memory transactions reached the super queue including requests initiated by the core

per-core l2_rqsts.all_demand_references Counts demand requests to L2 cache

per-core l2_rqsts.all_demand_miss Counts demand requests that miss L2 cache

per-core l2_rqsts.miss Counts read requests of any type with true-miss in the L2 cache, excluding ongoing L2 misses

per-core offcore_requests.data_rd Counts the demand and prefetch data reads

per-core l2_rqsts.all_demand_data_rd Counts demand data read requests accessing the L2 cache, which may hit or miss L2 cache

per-core l2_rqsts.demand_data_rd_hit Counts the number of demand data read requests initiated by load instructions that hit L2 cache

per-core offcore_requests.demand_data_rd Counts the demand data read requests sent to uncore

per-core l2_rqsts.demand_data_rd_miss Counts demand data read requests with true-miss in the L2 cache

per-core l2_rqsts.all_rfo Counts the total number of RFO requests to L2 cache, including L1D RFO misses and L1D RFO prefetches

per-core l2_rqsts.rfo_hit Counts the RFO requests that hit L2 cache

per-core l2_rqsts.rfo_miss Counts the RFO requests that miss L2 cache

per-core l2_rqsts.swpf_hit Counts software prefetch requests that hit the L2 cache

per-core l2_rqsts.swpf_miss Counts software prefetch requests that miss the L2 cache

per-core memory_activity.stalls_l2_miss Execution stalls while L2 cache miss demand cacheable load request is outstanding

per-core cycle_activity.cycles_l2_miss Cycles while L2 cache miss demand load is outstanding

per-core ORO.data_rd For every cycle, increments by the number of outstanding data read requests pending.

per-core ORO.cycles_with_data_rd Counts cycles where at least 1 outstanding data read request is pending.

per-core ORO.demand_data_rd For every cycle, increments by the number of outstanding demand data read requests pending

per-core ORO.cycles_with_demand_data_rd Counts cycles where at least 1 outstanding demand data read request is pending.

per-core ORO.cycles_with_demand_rfo Counts cycles where at least 1 outstanding demand RFO request is pending.

Latency

per-core mem_trans_retired.load_latency Loads latency starts by the actual cache access until the data is returned by the memory subsystem.

per-core mem_trans_retired.store_sample

Store latency starts when the demand write accesses the L1 datacache and lasts until the cacheline write is completed in

the memory subsystem.

Table 1: The summary of key performance counters in the core PMU used by PathFinder. ORO=offcore_requests_outstanding.

Algorithm 2 The PFEstimator Algorithm.

1: procedure Pipeline_Stall_Breakdown (CXL_DIMM_ID)

2: id = CXL_DIMM_ID; AllLoads = 0;

3: CXL_DIMM_Stall = get_CXLDIMM_stall_cycle(id);

4: for j in all_FlexBus_RCs do ⊲ CXL DIMM→ FlexBus RC

5: FlexBusRC_Load[j] = load_agg_rc2dimm(j, i);

6: AllLoads += FlexBusRC_Load[j];

7: for j in all_FlexBus_RCs do
8: weight =

𝐹𝑙𝑒𝑥𝐵𝑢𝑠𝑅𝐶_𝐿𝑜𝑎𝑑[𝑗]

𝐴𝑙𝑙𝐿𝑜𝑎𝑑𝑠
;

9: FlexBusRC_Stall[j] = weight × CXL_DIMM_Stall;

10: for i in all_FlexBus_RCs do ⊲ FlexBus RC→ Host Uncore

11: AllLoads = 0;

12: FlexBusRC_Stall [i] += get_FlexBusRC_stall_cycle(i);

13: for j in all_Host_Uncores do
14: HostUncore_Load[j] = load_agg_uncore2rc(j, i);

15: AllLoads += HostUncore_Load[j];

16: for j in all_Host_Uncores do
17: weight =

𝐻𝑜𝑠𝑡𝑈𝑛𝑐𝑜𝑟𝑒_𝐿𝑜𝑎𝑑[𝑗]

𝐴𝑙𝑙𝐿𝑜𝑎𝑑𝑠
;

18: HostUncore_Stall[j] = weight × FlexBusRC_Stall[i];

19: for i in all_Host_Uncores do ⊲ Host Uncore→ CHA

20: AllLoads = 0;

21: HostUncore_Stall [i] += get_Uncore_stall_cycle(i, id);

22: for j in all_CHAs do
23: CHA_Load[j] = load_agg_cha2uncore(j, i);

24: AllLoads += CHA_Load[j];

25: for j in all_Host_Uncores do
26: weight =

𝐶𝐻𝐴_𝐿𝑜𝑎𝑑[𝑗]

𝐴𝑙𝑙𝐿𝑜𝑎𝑑𝑠
;

27: CHA_Stall[j] = HostUncore_Stall[i] × weight;

28: CHA→LLC and in-core path segments are omitted;



Architectural
Component Scope Counter Description

Core LLC

per-core cycle_activity.stalls_l3_miss Counts execution stalls while L3 cache miss demand load is outstanding

per-core ORO.l3_miss_demand_data_rd Counts the number of demand data read requests pending that are known to have missed the L3 cache

per-core mem_load_retired.l3_hit Counts retired load instructions with at least one uop that hit in the L3 cache

per-core mem_load_retired.l3_miss Counts retired load instructions with at least one uop that missed in the L3 cache

per-core mem_load_l3_hit_retired(4)

Counts retired load instructions whose data sources were HitM responses from shared L3, were L3 hit and cross-core

snoop missed in on-pkg core cache, were L3 and cross-core snoop hits in on-pkg core cache and were hits in L3

without snoops required

per-core mem_load_l3_miss_retired(4)

Retired load instructions which data sources missed L3 but serviced from local DRAM, remote DRAM, forwarded from

a remote cache or hitm in remote cache

per-core longest_lat_cache.miss Counts core-originated cacheable requests that miss the L3 cache

per-core longest_lat_cache.reference Counts core-originated cacheable requests to the L3 cache

per-core ocr.modified_write.any_response Counts writebacks of modified cachelines and streaming stores that have any type of response

per-core ocr.demand_data_rd(9)

Counts offcore demand data reads in 9 scenarios: have any type of response; hit in the L3 or were snooped from

another core’s caches on the same socket; not supplied by the local socket’s L1, L2, or L3 caches; supplied by DRAM

attached to this socket, unless in Sub NUMA Cluster(SNC) Mode. In SNC Mode counts only those DRAM accesses that

are controlled by the close SNC Cluster; hit in a distant L3 Cache or were snooped from a distant core’s L1/L2 caches on

this socket when the system is in SNC (sub-NUMA cluster) mode; supplied by DRAM on a distant memory controller

of this socket when the system is in SNC (sub-NUMA cluster) mode; supplied by a cache on a remote socket where a

snoop hit a line in another core’s caches; supplied by DRAM attached to another socket; supplied by CXL DRAM

per-core ocr.rfo.any_response(9) Counts offcore demand RFO in 9 scenarios same as DRd scenarios

per-core ocr.l1d_hw_pf(9) Counts offcore L1D hardware prefetch in 9 scenarios same as DRd scenarios

per-core ocr.l2_hw_pf_drd(9) Counts offcore L2 hardware prefetch DRd in 9 scenarios same as DRd scenarios

per-core ocr.l2_hw_pf_rfo(9) Counts offcore L2 hardware prefetch RFO in 9 scenarios same as DRd scenarios

CHA LLC

per-socket unc_cha_tor_inserts.ia(4)

Counts the number of entries successfully inserted into the TOR come from cores in 4 scenarios: total requests;

requests hit LLC; requests miss LLC; requests miss LLC and target to CXL;

per-socket unc_cha_tor_inserts.ia_drd(9)

Count DRd from core in TOR in 8 scenarios: total insert; hit LLC; miss LLC; miss LLC and target DDR; miss LLC and

target local; miss LLC and target local DDR; miss LLC and target remote; miss LLC and target remote DDR; miss LLC

and target CXL;

per-socket unc_cha_tor_inserts.ia_drd_pref(9) Count DRd prefetch from core in TOR in 9 scenarios same as DRd scenarios

per-socket unc_cha_tor_inserts.ia_rfo(6)

Count RFO from core in TOR in 6 scenarios: total insert; hit LLC; miss LLC; miss LLC and target local; miss LLC and

target remote; miss LLC and target CXL;

per-socket unc_cha_tor_inserts.ia_rfo_pref(6) Count RFO prefetch from core in TOR in 6 scenarios same as RFO scenarios

per-socket unc_cha_tor_inserts.ia_wb(5)

Count write back request from core in TOR in 5 scenarios: write back from E/F to E state; from E/F to I state; from M

to E state; from M to I state; from S to I state;

per-socket unc_cha_tor_occupancy.ia(4)

For each cycle, this event accumulates the number of valid entries in the TOR that come from cores in 4 scenarios:

total requests; requests hit LLC; requests miss LLC; requests miss LLC and target to CXL;

per-socket unc_cha_tor_occupancy.ia_drd(9)

For each cycle, this event accumulates the number of valid DRd entries in the TOR that come from cores in 9 scenarios:

total insert; hit LLC; miss LLC; miss LLC and target DDR; miss LLC and target local; miss LLC and target local DDR;

miss LLC and target remote; miss LLC and target remote DDR; miss LLC and target CXL;

per-socket unc_cha_tor_occupancy.ia_drd_pref(9)

For each cycle, this event accumulates the number of valid DRd prefetch entries in the TOR that come from cores in 9

scenarios same as DRd scenarios.

per-socket unc_cha_tor_occupancy.ia_rfo(6)

For each cycle, this event accumulates the number of valid RFO entries in the TOR that come from cores in 6 scenarios:

total insert; hit LLC; miss LLC; miss LLC and target local; miss LLC and target remote; miss LLC and target CXL;

per-socket unc_cha_tor_occupancy.ia_rfo_pref(6)

For each cycle, this event accumulates the number of valid RFO prefetch entries in the TOR that come from cores in 6

scenarios same as RFO scenarios.

per-socket unc_cha_tor_occupancy.ia_wbmtoi

For each cycle, this event accumulates the number of valid write back M to I state entries in the TOR that come from

cores.

per-socket unc_cha_tor_threshold1.ia(4)

Count the number of cycles subevent TOR not empty in 4 scenarios: total requests; requests hit LLC; requests miss

LLC; requests miss LLC and target to CXL;

per-socket unc_cha_tor_threshold1.ia_drd(9)

Count the number of cycles subevent TOR not empty in 9 scenarios: total insert; hit LLC; miss LLC; miss LLC and

target DDR; miss LLC and target local; miss LLC and target local DDR; miss LLC and target remote; miss LLC and

target remote DDR; miss LLC and target CXL;

per-socket unc_cha_tor_threshold1.ia_drd_pref(9) Count the number of cycles subevent TOR not empty in 9 scenarios same as DRd scenarios.

per-socket unc_cha_tor_threshold1.ia_rfo(6)

Count the number of cycles subevent TOR not empty in 6 scenarios: total insert; hit LLC; miss LLC; miss LLC and

target local; miss LLC and target remote; miss LLC and target CXL;

per-socket unc_cha_tor_threshold1.ia_rfo_pref(6) Count the number of cycles subevent TOR not empty in 6 scenarios same as RFO scenarios.

Table 2: The summary of key performance counters in the CHA/LLC used by PathFinder.



Architectural
Component Scope Counter Description

IMC

per-channel unc_m_rpq_cycles_ne.pch0 Counts the number of cycles that the RPQ of pch0 is not empty

per-channel unc_m_rpq_cycles_ne.pch1 Counts the number of cycles that the RPQ of pch1 is not empty

per-channel unc_m_cas_count.all.pch0 Counts the total number of DRAM CAS commands issued on pch0 channel

per-channel unc_m_cas_count.all.pch1 Counts the total number of DRAM CAS commands issued on pch1 channel

per-channel unc_m_cas_count.rd.pch0 Counts the total number of DRAM Read CAS commands issued on pch0 channel

per-channel unc_m_cas_count.rd.pch1 Counts the total number of DRAM Read CAS commands issued on pch1 channel

per-channel unc_m_cas_count.wr.pch0 Counts the total number of DRAMWrite CAS commands issued on pch0 channel

per-channel unc_m_cas_count.wr.pch1 Counts the total number of DRAMWrite CAS commands issued on pch1 channel.

per-channel unc_m_rpq_inserts.pch0 Counts the number of allocations into the Read Pending Queue of PCH0

per-channel unc_m_rpq_inserts.pch1 Counts the number of allocations into the Read Pending Queue of PCH1

per-channel unc_m_rpq_occupancy_pch0 Accumulates the occupancies of the PCH0 Read Pending Queue each cycle

per-channel unc_m_rpq_occupancy_pch1 Accumulates the occupancies of the PCH1 Read Pending Queue each cycle

per-channel unc_m_wpq_cycles_ne.pch0 Counts the number of cycles that the WPQ of pch0 is not empty

per-channel unc_m_wpq_cycles_ne.pch1 Counts the number of cycles that the WPQ of pch1 is not empty

per-channel unc_m_wpq_inserts.pch0 Counts the number of allocations into the Write Pending Queue of PCH0

per-channel unc_m_wpq_inserts.pch1 Counts the number of allocations into the Write Pending Queue of PCH1

per-channel unc_m_wpq_occupancy_pch0 Accumulates the occupancies of the PCH0 Write Pending Queue each cycle

per-channel unc_m_wpq_occupancy_pch1 Accumulates the occupancies of the PCH1 Write Pending Queue each cycle

M2PCIe

per-socket unc_m2p_rxc_cycles_ne.all Counts the number of cycles when the M2PCIe ingress is not empty

per-socket unc_m2p_rxc_inserts.all Counts the number of entries inserted into the M2PCIe ingress queue

per-socket unc_m2p_txc_inserts_ak Counts the number of acknowledgements entries inserted into the M2PCIe egress queue

per-socket unc_m2p_txc_inserts_bl Counts the number of block data entries inserted into the M2PCIe egress queue

Table 3: The summary of key performance counters in the Uncore used by PathFinder.

Architectural
Component Scope Counter Description

CXL

per-socket unc_cxlcm_rxc_pack_buf_inserts Number of Allocation to Mem Rxx Packing buffer

per-socket unc_cxlcm_rxc_pack_buf_inserts.mem_data Number of Allocation to Mem Data Packing buffer

per-socket unc_cxlcm_rxc_pack_buf_full.mem_req Number of cycles the Packing Buffer is Full

per-socket unc_cxlcm_rxc_pack_buf_full.mem_data Number of cycles the Packing Buffer is Full

per-socket unc_cxlcm_rxc_pack_buf_ne.mem_req Number of cycles of Not Empty for Mem Rxx Packing buffer

per-socket unc_cxlcm_rxc_pack_buf_ne.mem_data Number of cycles of Not Empty for Mem Data Packing buffer

per-socket unc_cxlcm_txc_pack_buf_inserts.mem_req Number of Allocation to Mem Rxx Packing buffer

per-socket unc_cxlcm_txc_pack_buf_inserts.mem_data Number of Allocation to Mem Data Packing buffer

Table 4: The summary of key performance counters in the CXL device.

PMU Counter Data Path Description

Core

ocr.demand_data_rd(9) DRd

Counts DRds in 9 scenarios: (a) have any type of response; (b) hits in the L3 or were snooped from another core’s caches on

the same socket; (c) not supplied by the local socket’s L1, L2, or L3 caches; (d) supplied by DRAM attached to this socket,

unless in Sub NUMA Cluster (SNC) Mode count DRAM accesses that are controlled by the close SNC Cluster; (e) hit in a

distant L3 Cache or were snooped from a distant core’s L1/L2 caches on this socket when the system is in SNC mode; (f)

supplied by DRAM on a distant memory controller of this socket when the system is in SNC mode; (g)supplied by a cache

on a remote socket where a snoop hit a line in another core’s caches; (h) supplied by DRAM attached to another socket; (i)

supplied by CXL DRAM;

ocr.rfo(9) RFO Counts RFOs in 9 scenarios same as DRd scenarios;

ocr.l1d_hw_pf(9) HW PF (L1D) � DRd Counts L1D hardware prefetch in 9 scenarios same as DRd scenarios;

ocr.l2_hw_pf_drd(9) HW PF (L2) � DRd Counts L2 hardware prefetch DRd in 9 scenarios same as DRd scenarios;

ocr.l2_hw_pf_rfo(9) HW PF (L2) � RFO Counts L2 hardware prefetch RFO in 9 scenarios same as DRd scenarios

CHA

unc_cha_tor_inserts.ia_drd(9) DRd

Count DRd from core in TOR in 8 scenarios: (a) total insert; (b) hit LLC; (c) miss LLC; (d) miss LLC and target DDR; (e) miss

LLC and target local; (f) miss LLC and target local DDR; (g) miss LLC and target remote; (h) miss LLC and target remote

DDR; (i) miss LLC and target CXL;

unc_cha_tor_inserts.ia_rfo(6) RFO

Count RFO from core in TOR in 5 scenarios: (a) total insert; (b) hit LLC; (c) miss LLC; (d) miss LLC and target local; (e) miss

LLC and target remote; (f) miss LLC and target CXL;

unc_cha_tor_inserts.ia_drd_pref(9) HW/SW PF�DRd Count DRd prefetch from core in TOR in 9 scenarios same as DRd scenarios;

unc_cha_tor_inserts.ia_rfo_pref(6) HW/SW PF�RFO Count RFO prefetch from core in TOR in 6 scenarios same as RFO scenarios;

unc_cha_tor_inserts.ia_wb(5) DWr

Count write back request from core in TOR in 5 scenarios: (a) write back from E/F to E state; (b) from E/F to I state; (c) from

M to E state; (d) from M to I state; (e) from S to I state;

Uncore

unc_m2p_txc_inserts_ak(1) DWr Counts the number of acknowledgments entries inserted into the M2PCIe egress queue;

unc_m2p_txc_inserts_bl(1) DRd Counts the number of block data entries inserted into the M2PCIe egress queue;

Table 5: The key PMU counters used by PFBuilder to construct the path map for a mFlow. TOR=Table of Requests, which is a hardware queue
in the CHA. The number in the parenthesis (2nd column) indicates the sub-event amount for different cases.



Benchmark Suite Applications Parallelism Working Set
(MB)

SPEC CPU2017

500.perlbench_r (PER) 1-64 202.5

502.gcc_r (GCC) 1-64 1366.9

503.bwaves_r (BWA) 1-64 822.3

505.mcf_r (MCF) 1-64 609.1

507.cactuBSSN_r (CAC) 1-64 789.5

508.namd_r (NAM) 1-64 162.5

510.parest_r (PAR) 1-64 419.4

511.povray_r (POV) 1-64 7.0

519.lbm_r (LBM) 1-64 410.5

520.omnetpp_r (OMN) 1-64 242.0

521.wrf_r (WRF) 1-64 178.8

523.xalancbmk_r (XAL) 1-64 481.0

525.x264_r (X264) 1-64 156.0

526.blender_r (BLE) 1-64 633.7

527.cam4_r (CAM) 1-64 856.0

531.deepsjeng_r (DEEP) 1-64 699.5

538.imagick_r (IMA) 1-64 286.5

541.leela_r (LEE) 1-64 24.7

544.nab_r (NAB) 1-64 146.3

548.exchange2_r (EXC) 1-64 2.5

549.fotonik3d_r (FOT) 1-64 848.4

554.roms_r (ROMS) 1-64 841.6

557.xz_r (XZ) 1-64 775.4

600.perlbench_s(PERS) 1-64 202.5

602.gcc_s(GCCS) 1-64 7620.2

603.bwaves_s(BWAS) 1-64 11467.1

605.mcf_s(MCFS) 1-64 3960.8

607.cactuBSSN_s(CACS) 1-64 6724.0

619.lbm_s(LBMS) 1-64 3224.5

620.omnetpp_s(OMNS) 1-64 242.3

621.wrf_s(WRFS) 1-64 177.8

623.xalancbmk_s(XALS) 1-64 481.8

625.x264_s(X264S) 1-64 156.0

627.cam4_s(CAMS) 1-64 873.6

628.pop2_s(POPS) 1-64 1434.3

631.deepsjeng_s(DEES) 1-64 6879.5

638.imagick_s(IMAS) 1-64 7007.8

641.leela_s(LEES) 1-64 25.0

644.nab_s(NABS) 1-64 561.3

648.exchange2_s(EXCS) 1-64 2.5

649.fotonik3d_s(FOTS) 1-64 9642.8

654.roms_s(ROMSS) 1-64 10386.9

657.xz_s(XZS) 1-64 15344.0

PARSEC

blackscholes(BLACK) 1-64 612.0

bodytrack(BODY) 1-64 32.9

facesim(FACE) 1-64 304.3

ferret(FER) 1-64 97.9

fluidanimate(FLU) 1-64 519.5

freqmine(FRE) 1-64 631.9

raytrace(RAY) 1-64 1282.7

swaptions(SWA) 1-64 5.5

vips(PVIPS) 1-64 37.5

x264(PX264) 1-64 80.0

canneal(CAN) 1-64 850.5

dedup(DEDUP) 1-64 1443.0

streamcluster(STREAM) 1-64 109.0

SPLASH2X

barnes(BARN) 1-64 1584.0

ocean_cp(OCEAN) 1-64 3546.5

radiosity(RADIO) 1-64 1442.5

raytrace(SRAY) 1-64 22.5

volrend(VOL) 1-64 54.0

water_nsquared(WATN) 1-64 28.5

water_spatial(WATS) 1-64 669.5

fft(FFT) 1-64 12291.0

lu_cb(LUCB) 1-64 502.0

lu_ncb(LUNCB) 1-64 501.5

radix(RADIX) 1-64 4097.5

GAPBS

Breadth-First Search (BFS) 1-64 15778.0

Single-Source Shortest Paths (SSSP) 1-64 36456.3

PageRank (PR) 1-64 12616.1

Connected Components (CC) 1-64 12381.1

Betweenness Centrality (BC) 1-64 13394.5

Triangle Counting (TC) 1-64 21027.0

Table 6: Benchmarking applications and their configurations.



Hit Location

DRd RFO HW PF DWr

FOTS GCCS-s1 GCCS-s2 FOTS GCCS-s1 GCCS-s2 FOTS GCCS-s1 GCCS-s2 FOTS GCCS-s1 GCCS-s2

SB 7.8E+08 8.5E+07 2.1E+09

L1D 4.7E+09 8.1E+08 4.5E+09

LFB 3.1E+08 2.8E+08 1.3E+08

L2 4.3E+07 1.7E+07 1.7E+08 4.4E+06 3.8E+05 2.1E+07 1.8E+08 1.4E+08 1.7E+08 2.3E+05 84345 1.1E+07

local LLC 5.4E+06 5.0E+06 1.3E+07 7.5E+04 7.7E+04 1.0E+06 2.5E+07 9.7E+06 5.9E+07

1.5E+08 6.5E+06 7.9E+07

snc LLC 9.4E+05 4.0E+05 8.1E+06 6.1E+03 1.0E+04 8.4E+05 1.8E+07 8.1E+06 6.3E+07

remote LLC 13385 5290 6984 586 42 379 19031 10920 22646

CXL Memory 2.5E+07 1.9E+06 8.1E+06 1.5E+06 935 4.1E+06 2.2E+08 1.8E+08 2.1E+07

Table 7: We classify mFlows into DRd, RFO, HW PF and DWr data paths and separate path hit distribution on SB, L1D, LFB, and L2 components
for 649.𝑓 𝑜𝑡𝑜𝑛𝑖𝑘3𝑑_𝑠 and 602.𝑔𝑐𝑐_𝑠 , where GCCS-s1 and GCCS-s2 are two selected snapshots from 602.𝑔𝑐𝑐_𝑠 . For mFlows entering uncore region,
we separate hit distribution on local LLC, SNC LLC, remote LLC, and CXL memory. L1D and LFB counters only provide hit count data at load
path granularity.
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